Edge computing is changing the face of many industries and services. Common edge computing models offload computing which is prone to security risks and privacy violation. However, advances in deep learning enabled Internet of Things (IoTs) to take decisions and run cognitive tasks locally. This research introduces a decentralized-control edge model where most computation and decisions are moved to the IoT level. The model aims at decreasing communication to the edge which in return enhances efficiency and decreases latency. The model also avoids data transfer which raises security and privacy risks. To examine the model, we developed SAFEMYRIDES, a scene-aware ridesharing monitoring system where smart phones are detecting violations at the runtime. Current real-time monitoring systems are costly and require continuous network connectivity. The system uses optimized deep learning that run locally on IoTs to detect violations in ridesharing and record violation incidences. The system would enhance safety and security in ridesharing without violating privacy.
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
新兴边缘应用需要快速响应延迟和复杂处理。如果在短时间内,则这不可发挥昂贵的硬件,可以处理复杂的操作 - 例如对象检测。通过满足模型的复杂性,通过模型压缩,修剪和量化 - 或压缩输入来解决这个问题。或压缩输入。在本文中,我们在解决性能挑战时提出了不同的视角。克罗斯斯是一个多级方法,用于边缘云系统,提供了在精度和性能之间找到平衡的能力。克罗斯斯由两个阶段组成(可以普遍化为多个阶段):初始和最终阶段。初始阶段使用边缘处的近似/最佳努力计算实时执行计算。最终阶段在云执行完全计算,并使用结果校正在初始阶段的任何错误。在本文中,我们展示了这种方法对视频分析用例的影响,并展示了多级处理如何在精度和性能之间产生更好的平衡。此外,我们通过两个提案研究多级交易的安全:多阶段序列化(MS-SR)和具有道歉(MS-IA)的多阶段不变汇合。
translated by 谷歌翻译
在这项工作中,我们对情感和压力环境中的文本独立扬声器验证性能进行了实证对比研究。这项工作结合了浅架构的深层模型,导致新的混合分类器。利用了四种不同的混合模型:深神经网络隐藏式马尔可夫模型(DNN-HMM),深神经网络 - 高斯混合模型(DNN-GMM),高斯混合模型 - 深神经网络(GMM-DNN)和隐藏的马尔可夫模型-Deep神经网络(HMM-DNN)。所有模型都基于新颖的实施架构。比较研究使用了三个不同的语音数据集:私人阿拉伯数据集和两个公共英语数据库,即在模拟和实际压力下的演讲(Susas)和情感语音和歌曲(Ravdess)的ryerson视听数据库。上述混合模型的测试结果表明,所提出的HMM-DNN利用情绪和压力环境中的验证性能。结果还表明,HMM-DNN在曲线(AUC)评估度量下的相同错误率(eer)和面积方面优于所有其他混合模型。基于三个数据集的平均所产生的验证系统分别基于HMM-DNN,DNN-HMM,DNN-GMM和GMM-DNN产生7.19%,16.85%,11.51%和11.90%的eERs。此外,我们发现,与两个谈话环境中的所有其他混合模型相比,DNN-GMM模型展示了最少的计算复杂性。相反,HMM-DNN模型需要最多的培训时间。调查结果还证明了EER和AUC值在比较平均情绪和压力表演时依赖于数据库。
translated by 谷歌翻译
这项工作提出了诸如卷积神经网络(CNN),长短期记忆(LSTM),门控复发单元(GRU),它们的混合动力和情绪的浅学习分类器等深度学习模型的性能的详细比较阿拉伯语评论分析。另外,比较包括最先进的模型,例如变压器架构和阿拉伯的预先训练模型。本研究中使用的数据集是多方面的阿拉伯语酒店和书评数据集,这些数据集是阿拉伯评论的一些最大的公共数据集。结果表明,二元和多标签分类的浅层学习表现优于浅层学习,与文献中报告的类似工作的结果相比。结果中的这种差异是由数据集大小引起的,因为我们发现它与深度学习模型的性能成比例。在准确性和F1分数方面分析了深层和浅层学习技术的性能。最好的浅学习技术是随机森林,后跟决策树,以及adaboost。深度学习模型类似地使用默认的嵌入层进行,而变压器模型在增强Arabert时表现最佳。
translated by 谷歌翻译